Transport schemes on a sphere using radial basis functions
نویسندگان
چکیده
The aim of this work is to introduce the physics community to the high performance of radial basis functions (RBFs) compared to other spectral methods for modeling transport (pure advection) and to provide the first known application of the RBF methodology to hyperbolic partial differential equations on a sphere. First, it is shown that even when the advective operator is posed in spherical coordinates (thus having singularities at the poles), the RBF formulation of it is completely singularity-free. Then, two classical test cases are conducted: 1) linear advection, where the initial condition is simply transported around the sphere and 2) deformational flow (idealized cyclogenesis), where an angular velocity is applied to the initial condition, spinning it up around an axis of rotation. The results show that RBFs allow for a much lower spatial resolution (i.e. lower number of nodes) while being able to take unusually large time-steps to achieve the same accuracy as compared to other commonly used spectral methods on a sphere such as spherical harmonics, double Fourier series, and spectral element methods. Furthermore, RBFs are algorithmically much simpler to program.
منابع مشابه
Space-time radial basis function collocation method for one-dimensional advection-diffusion problem
The parabolic partial differential equation arises in many application of technologies. In this paper, we propose an approximate method for solution of the heat and advection-diffusion equations using Laguerre-Gaussians radial basis functions (LG-RBFs). The results of numerical experiments are compared with the other radial basis functions and the results of other schemes to confirm the validit...
متن کاملA meshless method for optimal control problem of Volterra-Fredholm integral equations using multiquadratic radial basis functions
In this paper, a numerical method is proposed for solving optimal control problem of Volterra integral equations using radial basis functions (RBFs) for approximating unknown function. Actually, the method is based on interpolation by radial basis functions including multiquadrics (MQs), to determine the control vector and the corresponding state vector in linear dynamic system while minimizing...
متن کاملMesh-free Semi-Lagrangian Methods for Transport on a Sphere Using Radial Basis Functions
We present three new semi-Lagrangian methods based on radial basis function (RBF) interpolation for numerically simulating transport on a sphere. The methods are mesh-free and are formulated entirely in Cartesian coordinates, thus avoiding any irregular clustering of nodes at artificial boundaries on the sphere and naturally bypassing any apparent artificial singularities associated with surfac...
متن کاملImplicit RBF Meshless Method for the Solution of Two-dimensional Variable Order Fractional Cable Equation
In the present work, the numerical solution of two-dimensional variable-order fractional cable (VOFC) equation using meshless collocation methods with thin plate spline radial basis functions is considered. In the proposed methods, we first use two schemes of order O(τ2) for the time derivatives and then meshless approach is applied to the space component. Numerical results obtained ...
متن کاملThe method of radial basis functions for the solution of nonlinear Fredholm integral equations system.
In this paper, An effective and simple numerical method is proposed for solving systems of integral equations using radial basis functions (RBFs). We present an algorithm based on interpolation by radial basis functions including multiquadratics (MQs), using Legendre-Gauss-Lobatto nodes and weights. Also a theorem is proved for convergence of the algorithm. Some numerical examples are presented...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 226 شماره
صفحات -
تاریخ انتشار 2007